대감집
[FinRL] CH1. 설치 본문
Contents
- Installation
- Framework Overview
- Main Component
- Dataset
- Train
- Backtest
- Examples
CH1. Main Component - Installation
Introduction
- 강화학습 기반 퀀트를 위해 알고리즘 추가/수정이 필요하기에 오픈소스 사용이 필수
- 강화학습 오픈 소스 중 가장 공신력 있는 NeurIPS & Nature에서 공개된 FinRL을 선정
- 이번 장에서는 FinRL 운용을 위한 Linux 개발환경 셋팅 부터 FinRL 설치 예정
GitHub - AI4Finance-Foundation/FinRL: FinRL: Financial Reinforcement Learning. 🔥
FinRL: Financial Reinforcement Learning. 🔥. Contribute to AI4Finance-Foundation/FinRL development by creating an account on GitHub.
github.com
FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance
As deep reinforcement learning (DRL) has been recognized as an effective approach in quantitative finance, getting hands-on experiences is attractive to beginners. However, to train a practical DRL trading agent that decides where to trade, at what price,
arxiv.org
Windows 10 (wsl install)
Step 1: Install Ubuntu on Windows 10
wsl --install
AnacondaStep 2: Install
Free Download | Anaconda
Anaconda's open-source Distribution is the easiest way to perform Python/R data science and machine learning on a single machine.
www.anaconda.com
OpenAIStep 3: Install
- Open an ubuntu terminal and type:
sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev libgl1-mesa-glx swig
FinRLStep 4: Install
- Please install the unstable development version of FinRL using pip:
pip install git+https://github.com/AI4Finance-Foundation/FinRL.git
FinRL-TutorialsStep 5: Run
- Download the FinRL-Tutorials repository in terminal:
git clone https://github.com/AI4Finance-Foundation/FinRL-Tutorials.git
'퀀트 투자 > FinRL' 카테고리의 다른 글
[FinRL] CH4. 예제 Overview (2) | 2024.01.14 |
---|---|
[FinRL] CH3. 플랫폼 구성-(3)Backtest (1) | 2024.01.11 |
[FinRL] CH3. 플랫폼 구성-(2)Train (1) | 2024.01.11 |
[FinRL] CH3. 플랫폼 구성-(1)Data (0) | 2024.01.11 |
[FinRL] CH2. 플랫폼 Overview (0) | 2024.01.11 |